
NASA-TM-11_64=_,.

.... --7-_

Natural Manipulation of Surfaces via

Spatially Weighted Transformations

Steve Bryson

RNR Technical Report RNR-91-004, January 1991

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275 (Rev Feb 81)



?f ii_!_

Natural Manipulation of Surfaces via

Spatially Weighted Transformations

Steve Bryson

RNR Technical Report RNR-91-004, January 1991

Computer Sciences Corporation/
Applied Research Office, Numerical Aerody_ics Simulation Division

NASA __ Research Center
MS T_5-1

MoffeR Field, Ca. 94035

bryson@nas._.gov

Abstract

This paper describes a method of directly manipulating a surface in computer graphics. The
manipulation is natural in the sense that when a point on the surface is moved via some transformation,
other points on the surface follow the motion in a way reminiscent of taffy or putty. Points near the
point transformed move _ost as much while points far away do not move at all. _ is accomplished
by defining a 'bump' weight function on the surface w_ch is sh_ and placed by the user. After the
manipulation, the vertices of the surface are replaced by theft transformed images. In _ way the user
can n_ally 'sculpt' the surface by simply moving parts of it around. _s system generalizes to any
transformation and any dimensionality. A simple implementation is de__ in detail.

Keywords: free-form surfaces, deformations, sold modeling, interaction techniques, direct
manipulation.



i ¸

ii ii_

i__

1: Introduction

1.1. Purpose and Motivation

The sculp_g and m_pulation of surfaces in computer graphics is a wen-studied problem. The interactive

def'mition rOfsurfaces has been _essed in many ways _luding splines and free form deformations [2, 4, 7, 8,
14, 15, 17]. The abiliW to 'reach out and grab' a _ of a s_ace for direct m_pulafion is the par__ which
will be _elo_ m _s paper. The conc_ developed m _ _is _ u a po_t p on a surface is ,grabbed
and moved', points near p move almost as much as p, w_e poin_ far _m p (perhaps) do not move at (Fig I).
In _ way the surface can be treated as a stretchable m__ much _e _ or mel_ cheese. Thus a _er would
be able to scul_ a shape out of a surface by moving p_ of the surface where he or she wants _m (fig. 2).

'Grabbing a point' means indica_g the point on the surface which is to be the center of the movem_t. "Moving

the point" me_ that the _dinates of that point are m_ to some other values _ou_ some transformation

T. In _ paper it is assumed that there is some way of indi_g the point to be grabbed, and of clef'ruing the

transformation. _s paper des__ a method of de_g the motion of _ the other points on a _face,

based on the movement of the grabbed point and parameters _ed by the user.

Fig 1" Three stages in the manipul_on of a surface, involving both translation and rotation.

To be use_l, _s method m_t give the user the c_W of _fly specifying:

- w_ch points move with precisely the motion _ed _ the user
- which pomts on the surface do not move at _ (so that moves _ be independent)

- how the rrem_g points (which are be__ the two cases above) move.

In addition, the _ent __cafion of these parameters should be easy to understand and visu_ze.
_e the basic i_ of the points moving near the _int grabbed is an obvious one, the user may also wish

for more exotic _ non,I_ possib_fies. These may _lude grog the en_ edge of a surface, moving a

ring on the surface _und the point grabbed (without moving _ _ of the _g), or moving the entire surface
as a rigid body. In general, there may be situations where moving an arbi_ subset of the surface is desired. The
method de__ in _ paper _ows in _ciple for _ of these possib_ties, and a __ implementation with
many of these fe_ w_l be described.

In _tion to _lp_g, the method develo_ in _ p_ may be __ in the field of topological

vi_al_afion [9]. _ _ field, it is desired _at the _ be able to manipulate a sin-face _ _ _es to
investigate the _logical properties of that surface. There are methods of _lo_cal _mg, i.e. surgery
[13] and handlebody theo_ [ 11], that _e v_ v_al but have _ inter_tive _ other th_ hand &awings. The

development of a surface m_pulation sys_ _ific_y for _logical visu_ation was the original
motivation for the work described in this paper. For this reason, it is _irable to have the m_pulation of the

surface preserve the topology of that surface (rou_y, how the vertices of the surface are connected).



_i I

Fig 2: Examples of surfaces sculpted using the method described in this paper. Clockwise

from upper left: two views of a cup; a boar's head; a cat mask.

i i¸





i/ (!
ii_._i!_)

i__i_iiii_i_iii__ii....

H

While the method described in this paper is discussed in terms of the manipulation of two-dimensional

surfaces in three-dimensional space, the generalization to higher (or lower) dimensions is straightforward.

1.2 Brief Survey of Existing Solutions to the Manipulation Problem

The most well developed approach to the interactive manipulation of surfaces in computer graphics is based

on cubic interpolation through defining points. This concept has developed into the well known spline approach
and its variants [2, 7, 8], which use control points to determine the shape of the surface. These control points

may or may not actually be on the surface to be manipulated. The spline approach has the advantage that

relatively few points can be used to define a surface, but the disadvantage that when the control points are moved,
the changes in the surface do not precisely track the motion of the control point. Instead the surface changes in

highly constrained and at times non-local ways (depending on the type of spline used). This problem has been
addressed with the concept of hierarchical spline systems [8]. Using splines, it is difficult to change from, for

example, highly local_ed to very broad manipulations at a given point. This difficulty is because the control

points actually define the surface, not the parameters of the manipulation of the surface. Thus changing the

behavior of the control points do requires a redef'mition of the surface. To avoid these problems, the method
described in this paper separates the parameters of the manipulation of the surface from the definition of the

surface. Also, in the more versatile and advanced spline methods the manipulation is via control points that are

off the surface: the surface itself is not grabbed, and knowing which control point is appropriate for the desired
motion is not obvious. Finally, the generalization to higher dimensional splines is simple in principle but

technically non-trivial.
Another, more recent, method of surface manipulation is that of free-form deformation [ 15, 4], which assigns

a three-d'tmensional lattice to a volume enclosing the object to be deformed. The coordinates of the object are

computed with respect to the lattice. The lattice is then deformed through the manipulation of its vertices, which
produces deformed coordinates at each lattice vertex. The coordinates of the vertices in the object in lattice
coordinates are then composed with the coordinates of the deformed lattice vertices to produced a distortion of the

object. This method has several advantages: the distinction between the object definition and the distortion
clef'tuition; the ability to produce both local and global deformations by dynamic choice of the lattice; and the

trivial generalization to arbitrary dimensions. In this system, however, it is the lattice points, not the surface
itself that is 'grabbed'. Also, only those distortions that are allowed by available lattices are possible [4]. More

seriously, if pieces of a s_ace are folded over on each other, one can encounter situations where two parts of the
surface are in the same lattice cell, m_g it difficult to move them apart again. Finany, even if the lattice for the

desired manipulation is available, the user must know which one it is and select it, thus entailing some extra work.
A surface manipulation system based on the deformable surfaces developed by Terzopoulos et.al. [16] has

been implemented by Waters and Wang [17]. This system enables the direct manipulation of surfaces, and the

problem of the motion of neighboring vertices is solved through treating the surface as some physical medium.
While Waters and Wang's approach shares many intuitions with the system developed in this paper, the physical
simulation underlying their approach would constrain the types of manipulations allowed. Further, the

computational task involved in computing the physical simulations constrains the real-time capabilities of an
implementation.

A completely different approach to the deformation of surfaces and solid objects is that of Barr [ 1], where

objects are deformed through linear transformations that are weighted with a function of time or position. While
Barr did not suggest a method of manipulation, his underlying principles are very similar to those described in

this paper.
As part of a general system for sculpting 3D data, Parent [ 14] described a simple scheme which is also similar

to the method developed in this paper. Parent presents an interpolation scheme in which the movement of a point

on a surface causes nearby points to move as if they are elastically attached to the moved point. This scheme has

the beginnings of the system developed in this paper, but is limited to the movement of individual points and uses

a non-intuitive weighting function.
In a sense, the system described in this paper is a combination and generalization of both Barr's and Parent's

work in such a way that an interface is easy to construct.

1.3 Brief Description of the Algorithm

The purpose of the system described in this paper is to allow the user to 'reach out' and 'grab' a virtual surface

with an input device, and as the user moves the input device:

a) some specified region of the surface moves precisely as indicated by that device,

b) some other specified region of the surface does not move at all
and

c) the rest of the surface nicely interpolates between these two regions.

This system treats the surface as a collection of vertices with cormectedness, and defines a transformation T on

these vertices via some input device. A smooth mask m is generated which is equal to 1 in some specified region

where the vertices will be transformed by T, 0 in some other specified region where the vertices will not be



:_:_iil•

_i _:: : ii

!:!i:̧ .:••

transformed at all, and some number between 0 and 1 everywhere else, so that these vertices will be transformed by

m*T.

In effect, we are defining a weigh_g _tion m(v) on each vertex v such that 0 < m(v) < 1. Further, this
weigh_g function is to be continuous in the s_e that m(v) = m(s, t) where s and t are parameters on the surface
at the vertex v and m(s, t) is continuous, and that derivatives to some specified order exist and are con_uous. In

fact, a weight function which has continuous derivatives to all orders (i. e. is smooth)everywhere except for a
one-dimensional _e (where the second deriv_ve is discontinuous)will be used. This means that in practice,

since the probability of a vertex falling on _ c_e is _, the trans_rmations on the vertices will be smooth

everywhere. _te many other wei_t functions that are less smooth wiU be s_larly well behaved in practice,

we have chosen one that a)has a nice shape, b) is almost smooth, and c) is not too time consuming to compute (A
s_lar _ction that is smooth everywhere is defined in terms of integrals which must be evaluated numerically).

When the surface is 'grabbed' and manipula_ only the part of the surface grabbed should move, and not any

overlapping or intersec_g p_ of the s_face. _s requkes that we def'me the continui_ of the weight _cdon

with reset to distances along the surface, not the distance between v_ices in _ee dimensions. More
s__c_y, we are demanding that the weight fimction is local with reset to the surface, not with respect to the

sp_ the _ace is _ersed in. _ way if, for example, the surface self-intersects we can manipulate one part
of the surf_ at the intersection without moving the intersec_g part.

Once a single m_pulation of the s_ace has been performed, the vertices clef'ruing the surface are replaced by
their images under the masked tr_form described above, producing a new surface wl-fich may g_ be
m_pulated. In this sense, _s system is iterative: the surface is replaced by its m_pulated image.

2- Theory

2.1 Definition of the bump weighting function

A weigh_g function is needed that is constam and equal to one in some set of numbers, is constant and equal

to 0 outside some larger set of numbers that con_ the _st one, is monotonic_y decreasing from I to 0 in
between, and is smooth. A _ction which is versatile, easy to control, and has a nice shape is the bump function.

The construction of this function is b_ on the _ction

0 -2) x < 0fix)- - (.x x > 0
e

f(x) has well-defined derivatives to all orders at 0 (its derivatives are of the form (polynomial in x)*(polynomial
in (l/x))*f(x), and f(x) will go to _o faster than the polynomial in (l/x) diverges as x goes to zero) [10, exercise

1.1.18]. _s function is used to construct _e smooth step function

0

e

1

x _<0

O<x<a

x>a

which has continuous derivatives to _ orders at x--0 (fig. 3). At x=a, where a is any positive number, this

function has _ntinuous second and higher derivatives. (In general, the function

0

sp(x, a, p) = -
e

1

x_<O

O<x<a

x>_a

will have continuous derivatives up to order p-1 at x=a. Thus one can have higher degrees of continuity at x=a at

the cost of steeper bumps.) By translation, the _ction

step(x, r0, r 1) - s(x-r0, rl-r0)



is a function that is equal to 0 for x < tO, equal to I for x > r I, and is smooth between rO and r l, where 0 < 143< r l.

Finally, one can def'me the bump function, given by

step(x, c-r0, c-r l)bump(x, c, r0, rl) = step(2c-x, c-r0, c-rl)
x<c

x>c

where c is any number which gives the center of the bump, rl is the distance from the center wi_ which the

bump is equal to 1, and r0 is the distance _m the center beyond which the bump is equal to 0 (fig 4).
The function bump(x, c, r0, rl) defines a bump which is controlled by three parameters: c, which is where on

the real line the bump sits; r0, the width of the nonzero parts of the bump; and r l, the width of the plateau where

the bump is cons_t and equal to one. Changing c changes the location of the bump. Changing r0 changes the

s_e of the nonzero part of the bump, and finally changing rl changes the size of the plateau of the bump. The
task of controlling the bump is the task of controlling these _ee parameters.

X m a

c-r0

]

m

c-rl

r0

rl

c+rl c+r0

Fig 3: The basic step _ction

s(x, a).
Fig. 4: The bump function, showing the

parameters c, r l, r0 which define the bump.

2.2: Definition of the vertex transformation for the local manipulation of a surface.

The bump function def'med in section 2.1 is very useful for _i_ing the way in which a surface is

, m_pula_. Intuitively, when a user s_ifies that a surface has been grabbed at a pamcular point p and moves
the controller to define some transformation T, then the surface close to p should be fully transformed by T,

moving with the controller. The effect of the transformation should fall off gradually with incr_ing distance

from p on the surface, _fiI far away, _e surface does not move at all. _ is accomp_shed by using the bump

function with x = distance from p and _g c to be zero (the de_tion of _tance and nonzero values of c will be

discussed shortly). At each vertex of the surface, the transformation at that vertex is defined as:

T'(x) = bump(x, c, r0, rl)*T + (1-bump(x, c, r0, rl))*Id

where x is the distance of the vertex from p and Id = the identity tr_formation. _ is simply a weighted linear

combination of the i_ntity transformation and the transformation T defined throu_ the user's input. Where

bump(x, c, r0, rl) = 1, "r'(x)= T, and where bump(x, c, _, rl) = 0, T(x)- Id. Note that T n_ not be a linear

tr_formation, but can be any map from three-dimensional space to three-dimensional space.
There is one serious ambiguiW in _ scheme: the definition of distance on the surface. One could use the

euclidean three_ensional _tance be_een the vertices, but when the surface is folded over on itself, say folded

comer to corner, then grabbing one comer will cause the opposite comer to move (See fig. 5). The points in the
center of the surface, which we usually _I closer to one comer than the opposite comer, will move less, and the

effect could be that we have grabbed the two comers at once. _le _ may be desirable in special circumstances

(see uhe section on topology below), this is not what is intuitively meant by "grabbing the surface at a poinf'.



,_ _i_

•i_ii_iil_i_

iii _

_i_.... _

Fig 5: A cross section of a folded surface. The circle shows where the weight function is
nonzero if the weight function is a function of the distance between the vertices on the

surface. Then if vertex p is grabbed and moved, vertex q will also be moved, even though p is

far from q with respect to distance measured on the surface.

The simplest solution is to treat the surface as a parameterized surface, so that the initial undeformed surface is

the image of some (preferably smooth) function _(s, 0 which, for each value of s and t, gives a point in three-

dimensional space. This means that each vertex defining the _tial surface is an image of _s, t) for some

particular value of s and t. The parameterization of the surface can be chosen (for convenience) so that the entire

surface is the image of the s_are 0 <_s _< I and 0 <_t <_ 1 (fig. 6). We can then _fme the _stance between two

vertices as the distance in (s, t) space between the two points on the square which get mapped to those vertices.

Given a point p on the surface and its corresponding parameters (sp, tp), then a point that is closer than another in

(s, t) space will map to a point that is closer on the surface. When the surface is deformed after manipulation,

vertices that come from similar values of (s, t) will be closer together than vertices that come from very different

values of (s, t), so the weighting function will still be local with reset to the surface.

(o,_) (1, 1) r_(_s,
t)

i" "k

] "_

I
(o, o) (1, o)

Fig 6: The def'mition of a parametrized surface as a function from the unit square to three-

dimensional space. The image of the circle on the surface represents where the weight function

is nonzero, when distance is measured in the (s, t) parameter space.

There is one disadvantage to _ definition of distance on the surface, ff adjacent vertices on a surface are

stretched far apart, they wiU sdl be treated as adjacent and therefore near with respect to the bump function. This

is because they are _ages of nearby points in the parameter space. Thus vertices that have been moved far apart
can move together if one of them is grabbed. Another way to see Ks problem is t.hat the bump function, which is
circular on the undistorted surface, will be distorted on the distorted surface. Possible solutions to _ problem

will be briefly discussed hn section 4. In the c_ent implementation of Ks system, an interface (which is

discussed in section 3.3) was developed that gave the user the ability to work around this problem.

When the parameter tin the bump _cfion is taken to _ non-z_o, then the weight function will form a ring

about the point p (fig. 7). If c > r0, there will bean area in the center of the ring, centered at p, that will not move

at all. Examples of the usefulness of Us capability will be given below.



_ii_ I _

Fig 7: A translation of a portion of the surface def'med by a bump function with a non-zero
value of c. The surface is grabbed in the center oft he ring.

Note that the above discussion trivially extends to a pararneterized sm'face of any dimension in a space of any

dimension. Let y be a map from an n-dimensional parameter apace to an m-dimensional space (usually we take n <
m). T and T'(x) would then map from m-dimensional space to m-dimensional space, and if they are linear
transformations they would be m x m matrices. The bump weight function would then be a function of the distance
in the n-dimensional parameter space. In this way the method described here can be used to manipulate volumetric
objects.

Note also that the definition of T'(x) can be generalized to any weight function. The bump function is treated
specially because its parameters correspond to those asters of the manipulation over which we desire the most
control, namely the size of the region of the surface effected.

2.3: Surfaces With Topologies Different From the Square.

The topology of a surface is the way that the surface is connected. In the case of polygonal surfaces, the

topology is determined by how the vertices of that surface are connected. There are parmneterized sm_aces that,
while being the image a square, are topologically different from a square. Examples _lude the sphere, cylinder,
and torus (fig. 8). Consider the sphere. The usual definition of the sphere as a parameterization of the square is
obtained by identifying two opposite edges (say the edges parallel to the vertical axis), and identifying all points
on each of the other edges (parCel to the horizxmtal axis). (Identifying points means that they are mapped to
exactly the same coordinates in three-dimensional space.) This is much like the latimde_ongimde system on the
Earth. Using the above definition of distance in the bump function, grabbing the comer (say at (0, 0) in parameter
space) and moving it will cause only those points around the image of that comer on the sphere to move. This
will cause that part of the surface to be disconnected from the image of the comer (at (0, I)) with which it should be
identified, and the surface will become a sphere with a hole in it. If we went our manipulation to preserve the
topology of the surface,thiscannotbe allowedto happen.

A simple solution is to define the distance between vertices used in the bump fimcfion to be the three-
dimensional .distance between vertices in the undeformed stwface rather than in the parameter space. In the case of
a planar _tial surface, this definition of distance will be equivalent to that given above. In the case of surfaces
with different topologies, however, this definition of the surface will give very different _ts. Points that are
close together in the undeformed surface will be treated as close together in the deformed surface. This will cause
points that are identified to move in identical ways, and so stay identified. This will assure that the topology of
the surface is preserved.

3: Example Implementation

The system described above was implemented based on parame_ two-dimensional surfaces in _ee
dimensions. _ the surfaces are parameterzied, the vertices on the surface are three _ctions (called
components of the v_x)of two _ame_s (c_led parameters of the v_x). Thin each v_x has a _ of
parame_ and _ee components. _ connectedness of the surface is defined _ the or_g of the p_eters,
and in fact the coordinates of a v_x are stored in _ays indexed _ the parame_ of _ v_x. _ simplifies
many _ks, such as finding the parame_ of a vertex given its __ via a search of the coordinate a_ays.
When the _ selects a vertex to be the 'pic_p point' on the surface, the _eters of that point are defined
in this manner.



• i_ _ i_

H_

ii !_

Fig 8: Examples of two-dimensional surfaces with different topologies. Clockwise from
upper left: plane; sphere; cylinder; torus.





_i_

•!i i,_

In an implementation of the theoretical structure described above, three logically independent tasks have to

be performed, given a grab point on the surface and a transformation to be applied at that point:

- Define the shape of the bump weighting function on the surface as a function of distance from the grab
point

-Compute of the weighting function centered at that point for all vertices on the surface
- Compute the wei_ted transformation of each vertex in the surface.

Extern_y, the user specifies the shape of the bump function, selects a grab point to center the bump, and
indicates a transform_on by moving the grab point in some _lowed way. The shape of the bump function is

dete_ed by the values of the parameters c, r0, and rl def'med in section 2.1.

3.1 Controlling the Shape of the Bump Weight Function

The interface for the control of the shape of the basic bump _cfion is given by drawing a graph of the

c_ent b_p _ction on the screen (fig 9). Handles representing the parameters c, r0, and r l are superimposed on
the graph. The user can 'dick and drag' these handles to change the values of the corresponding parameters, and as

the bump is redef'med the graph is redraw, giving the user feedback on the new shape of the bump.
The mer must be given some indication of the strength of the bump on the surface. _s feedback is

particularly impor_t in light of the fact that the bump function on the surface will be distorted as the surface is
distort, as described in section 2.2. Even without Ks problem, however, the possib_ity of exotic bump shapes

(such as rings and r_al m_lafions)requ_es that the user have g_ feedback as to exactly where on the s_ace

the bump function will cause vertices to move. In the current implementation, Ks problem was solved by

coloring the vertices on the surface according to the value of the bump. The color of each vertex is defined to be

an inte_lation between two colors, with the value of the bump function at that vertex as the interpolation

parameter (fig 9).

_er wei_t functions beyond the bump function will need appro_ate interfaces. In some sense, it is the
interface that determines w_ch weigh_g _ctions are _ehl, and in fact it is its relative ease of definition that

makes _e bump function so race. The radi_ m_fications to the b_p function _scfi_ in section 3.2 w_l need
such an interface. One possibiaty would _ a version of Ks system that m_pulates one-dLrnensional surfaces in

two dimensions, with appropriate constraints.

3.2 Computing the Bump Weight Function

Once the user has indicated a vertex p, w_ch is considered the grab_ vertex, the parameters of p, (ps, pt) are

dete_ed. Then ford values of the par_eters (s, t) for w_ch there are vertices, the value of the bump _ction

are computed as bump(r, c, r0, rl), where r is the euclidean distance from (ps, pt)to (s, t) -_/(ps-s) 2 + (pt-t) 2.

The value of bump(r, c, r0, rI)is stored in an array bval[s][t] (with s and t appro_ately converted to indices),

w_ch co_esponds to the vertex with parameters (s, t).
When the topology of the surface is non-mvial, as described in section 2.3, then some additional structure is

required. _ s_p, the vertex components of the paramet_zed surface _or to any defo_ation are stored in the
array of 3D vectors _t[s][t]. _ when the grab point p is selec_ as de__ above, the bump function at all

other vertices of the smface are cornered as bmnp(r, c, _, r l) where now r is the eucfid_ _tance in three

dimensions from _t_][pt] to _t[s][t]. In _ way, if two ve_ces coincide on the _tial surface, they will be

transformed identic_y and so will always coincide.
In addition to the control over the shape of the bump function described above, an ability to enrich the shape

of the bump was _lemen_ by replacing the r computed in the above paragraphs by r/frO), where f(O) is some

(preferably periodic)function, and 0 is an angle parameter defined as arc_(ds/dt) where ds = ps - t, dt = pt - t. In

this way irre_lar, radial variations in the bump can be easily implemented. In the author's implementation, f(O)

is a simple eHi_ with variable eccentricity and phase (fig. 9).

3.3 Transforming the Vertices

The transformations that are s__ in _ implementation are translation, rotation, and sca_g. These

transformations are controlled with mouse and keyboard combination commands.

"When the user indicates that a vertex p (with components (px, py, pz)) on the surface is to be grabbed, the

value of the bump function _tered at p is compu_ _ each v_x of the surface as de__ m section 3.1.

Then, by moving the input devil, the user indicates the translation (_, _, tz), rotation R, and _ale
transformation (scalex, _ey, scalez)that are to be applied to the suurface (fig. I0). The transformation at each

vertex v with par_eters (s, t) is wei_ted by the value in bval[s][t] at that vertex as follows:



H

• i _

.... ii _i!ii _

H •

Fig 9: The user's surface manipulation environment. In each figure, the line drawing under
the surface is a graph of the bump function as a function of distmce. The colored dots are the
handles that the user moves to control parameters of the bun_. The circle in the upper left
allows the specification of _a] _tortions in the bump. The white area on the surface is the

region where the bump function is non-zero. Upper left: The plane prior to mmtipulafion.
Note the cursor s'm_undexl by white area. Upper Right: The surfw, e _ trmmlation upwards

weighted by the bump function indicated by the white area in the upper left figure. Lower left:

a r_ally distorted bump weighting a translation upwards. Note from the graph below the

fig_e that the bump is now very broad. The circle in the _ leh of the fi_e has become
an ellipse. The white area is now eUiptical on the surface, so an e_ptical hump is _ by
the transformation. Lower Right: An example of many translations and rotations weighteM

by many differently shaped bump functions, with the bump editing tools turned off.





0 )T'(v) = bval[s][t] scaley 0 R +
0 scalez -bvaJ[s][t]0 0 )

1-_[s][t]0
0 l-bval[s][t]

transformadonisthenappliedtothecurt,rotcomponentsofvertexv = (vx,vy,vz) as

,vx'; ax-px ) _x+tx*bval[s][t] )
vy' =T'(v)W-PY + ]py+ty*bval[s][t]

z'  vz.z ki,z+t/*bv [s]It]

Thus the transformations are applied to each vertex center_ around p. In particular, the rotations and the
scaling take p as the origin.

Fig 10: _ee _ic tr_fonnations: translation, m_om and _g. The sc_g is
performed after a _slation.

3.4 Optimization and Performance

_ere are two compu_on_y m_ive _ts of _ _lementation of _ system:

- Computation of the value of the bump function at each v_x. _ invo_ computing square rots,
exponent, and (to enable r_ m_cations)_ tangents. These must _ performed for every
vertex on the surface, unless _i_ _traints &e __ on the bump function (such as bump(x, c,
tO, rl) - 0 for x > some value). They need m _ _ ev_ time the _ changes the shape of the bump
(so the v__ effected _ the _ can _ di_l_ed)or selects a new _ _int. _e these _ons
can _ __ as discrete events, _ ab_ W m rOUge the _ shap_ lind lllOve the grab _mt in real
_e is des_le so that the effect on the surface _ be

- Computation of the vertex _formation and _ansforming _ v_x oomponents for each v_x on the
smface. Where the weight function b _, the v_x _ansformation is the identiw, so op_tion
wo_d inc_ checking for _ case.

On an SGI _ 4D340/VGX _g on a single __, _ of the above tasks m g at l_t I0 fr_es/sec
on a s_face of 20 x 20 vertices, not incIu_g rende_g time. As _ number of v_ m _ surface increased,
the perfo_ance of _ system dro_ to _ut 2 _es/sec when recompu_g the bump function _ a surface
of l_x I_ v__.

4: Future Work



.... :i ¸' :

!i•

There have been several issues raised in the development of this system. With respect to the existing

implementation, the outstanding problem is the def'mition of distance on the surface. The methods described in
section 2.2 above were motivated by the desire to keep the manipulation local with respect to the surface, and not
with respect to the way that surface is embedded in three-dimensional space. A fast way to compute the distance
along the surface in the three-dimensional space would be a better solution. This would require something like

geodesic distance on a surface of arbitrary shape. If the surface is parameterized and is topologically the same as
the square, one approach is the following: find those vertices whose parameters are close to the straight line

between the points of interest in the parameter space and sum the euclidean distance between their components.
While this is not exactly the same as the geodesic on the surface, this will give a sense of distance on the surface

without the problems encountered above. Implementing this idea in real time is non-trivial, however. Also, in
the case of non-trivial topologies such as spheres, straight lines will in general not correspond to the geodesics
on the surface.

Until such a defu-dtion of distance on a surface is developed, perhaps there is some alternate def'mition of

distance that can be developed, using the definition in section 2.2 wei__ by some dis_ce in three dimensions.

The user interface for specifying the 'grab point' on the surface and the transformation manipulating the
surface can be further developed. Manipulations typically involve rotations and translations, and the user would
be greatly aided by perceiving the surface as a three dimensional object. Thus it would be desirable to implement
this system in the virtual environment interfaces that have been recently developed [5, 6, 12, 3].

Another interesting direction is the exploration of weight functions that are more general than the bump
function. Ce_y, a surface manipulation tool kit will have many choices for the weight function. The main

difficulty to overcome is the development of the user interface to allow the definition of general weight functions.
For a topology visualization tool kit, several features beyond the current system are requixed. A

visualization tool for surgery and handlebody theory would require, besides the direct manipulation of surfaces, the

ability to attach surfaces together and cut surfaces apart. This is a problem for both the internal representation of
the surfaces and the user interface for specifying the attach and cut points. It will also be necessary to control the

rendering in sophisticated ways will be necessary, so that the user can see the interior of complicated, folded
surfaces. A method of constraining the motion and detecting intersections of the surface would permit the
investigation of categories of surface manipulation other than those which permit intersections.

Ack nowled ge men t s

The Author would like to thank _ colleagues in the Advanced Research Office of the NAS division at NASA

Ames for their many helpful comments and discussions, particularly Sam Uselton, Creon Levi4 Mike Yamas_,
A1 Globus, Kyra Lowther, and Horst S_on. Th_ also to Jeff Hultquist for help with Posts_ipt and John
K_s_ak for _thusiasm. S_ial appreciation goes to _ofs. Andrew Hanson and Louis Kauffman for being
sources of _p_ation and for the_ very w_ encouragement.

References

Barr, A., Global and _al _formations of Solid _tives, Computer Graphics, Vol I7, #3, July

19M, pp 21-30

Bartels, R., Beatty, J, and Bars_, B., An Introd_tion to Splines for use in Computer Graphics and

Geometric Modeling, Morgan Kaufmmm, Los Altos, CA. 1987

Bryson, S. and Levit, C., A Virt_ Enviro_nt for the _loration of Three-Dimensional Steady
Flows, R_ Technical Report #_-90-013, 1990, to apgear in Proceedings of the 1991 SPIE

conference on Stereoscopic Displays and Applwations, San Jose, Ca. 1991

Coqu_art, S .....Extended Free-Form Deformation: A Sculpting Tool for 3D Geometric Modeling,
C_uter Graphics, Vol _, _, July 1990, pp 187-193

Fisher, S. et. al., V_al Environment _terface Workstations, Proceedings of the Human Factors

Society 32nd A_ Meeting, Anahe_ Ca. 1988

Fisher, S., V_al Env_o_en_, Personal Simulation and Telepresence, Implementing and Interacting

with Real Tune M_roworlds, Co_e Notes, Vol. 29, SI_RAPH I989

Foley, J., vanDam, A., Feiner, S., and Hughes, J., Computer Graphics: Principles and Practice 2nd Ed.,

Addison-Wesley, Reading, MA. 1990

I0



_ i i

: _,i_

10

11

I2

13

14

15

16

17

Forsey, D., and Barrels, R., Hierarchical B-Spline Refinement, Computer Graphics, Vol 22, #4, August
1988, pp 205-212

Francis, G., A Topological Picturebook, Springer-Verlag, New York, NY. 1987

GuiHemin, V. and Pollack, A., Differential Topology, Prentice-HaU, Englewood Cliffs, NJ., 1974

Kirby, R., The Topology of 4-Manifolds, Lecture Notes in Mathematics #1374, Springer-Verlag, New

York, 1989

MacDowall, I., Bolas, M., Pieper, S., Fisher, S. and Humphries, J., Implementation and Integration of a

Counterbalanced CRT-based Stereoscopic Display for Interactive Viewpoint Control in Virtual
Environment Applications, Proceedings of the 1990 SPIE Conference on Stereoscopic Displays and

Applications, Santa Clara, Ca. 1990

M_or, J., Lectures on the h-Cobordism Theorem, Mathematical Notes #1, Princeton University Press,

Princeton, NJ.,1965

Parent, R., A System for Sculp_g 3-D Data, Computer Graphics, Vol 11, #2, July 1977, pp 138-147

Sederberg, T. and Parry, S., Free-Form Deformation of Solid Geometric Models, Computer Graphics, Vol

20, #4, July 1986, pp 151-160

Terzopoulos, D., Platt, J., Barr, A. and Fleischer, K., Elastically Deformable Models, Computer

Graphics, Vol 21, #4, July 1987, pp 205-214

Waters, K. and Wang, S., A 3D Interactive Physically-Based Micro World, Extracting Meaning from

Complex Data: Processing, Display, Interaction, SP_ Vol. I295 1990

11


